This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

Sugar for synthetic cells

March 4th, 2015 Lectins (rot) crosslink functionalised giant vesicles (green) to proto-tissues.
Sugar for synthetic cells
Lectins (rot) crosslink functionalised giant vesicles (green) to proto-tissues.

After its success in the first joint call by ERASynBio, the collaborative project Synthetic Glycobiology - new strategies to build and functionalise proto-cells and proto-tissues is now set to receive roughly 1.9 million euros in total funding. SynGlycTis is a collaboration of scientists from Denmark, Germany, the UK, France, and Austria. Its members include Junior Professor Dr. Winfried Römer from the University of Freiburg and his team of researchers. The University of Freiburg team will now receive roughly 400,000 euros of the project's overall funding from the German Federal Ministry of Education and Research for a period of 36 months. The scientists in the SynGlycTis project plan to produce so-called proto-cells to study their behaviour.

Proto-cells are artificial systems of vesicle-shaped membranes. They can be produced with the help of giant vesicles, which are also synthetic and imitate the membranes of natural cells. The researchers plan to use these synthetic proto-cells to gain a better understanding of processes in natural systems by replicating these. Proto-cells could also be used in the future as systems to transport active agents, for example. This means, medications could be administered more directly where needed and released over longer periods of time in a controlled way.

Proto-cells are much less complex than natural cells. One important element in natural cells that scientists have not yet been able to integrate in their synthetic counterparts is the so-called glycocalyx, which consists mainly of polysaccharides. It protects the cell membrane and also plays an important role in the interaction between cells, among other things. Lectins, which are proteins that can bind sugar, are also important for cellular interaction. Some pathogens, like viruses and bacteria, use sugar-protein interaction to enter human cells. Sugar-protein interaction can also cause the formation of proto-organelles and proto-tissues. That is why Römer's team is investigating not only the integration of components in giant vesicles, but also interaction within the proto-cell with the help of fluorescence and atomic force microscopes. The team's goal is to build proto-organelles and proto-tissues.

Provided by Albert Ludwigs University of Freiburg

Citation: Sugar for synthetic cells (2015, March 4) retrieved 14 March 2025 from https://sciencex.com/wire-news/186912469/sugar-for-synthetic-cells.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.